256x^2+81x^2=11664

Simple and best practice solution for 256x^2+81x^2=11664 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 256x^2+81x^2=11664 equation:



256x^2+81x^2=11664
We move all terms to the left:
256x^2+81x^2-(11664)=0
We add all the numbers together, and all the variables
337x^2-11664=0
a = 337; b = 0; c = -11664;
Δ = b2-4ac
Δ = 02-4·337·(-11664)
Δ = 15723072
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{15723072}=\sqrt{46656*337}=\sqrt{46656}*\sqrt{337}=216\sqrt{337}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-216\sqrt{337}}{2*337}=\frac{0-216\sqrt{337}}{674} =-\frac{216\sqrt{337}}{674} =-\frac{108\sqrt{337}}{337} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+216\sqrt{337}}{2*337}=\frac{0+216\sqrt{337}}{674} =\frac{216\sqrt{337}}{674} =\frac{108\sqrt{337}}{337} $

See similar equations:

| x•0.2x=66 | | 3u=- | | 69.723=(x)(68.9257)+(1-x)(70.9249) | | 2x+8+5x-1=180 | | 100x+250=−400 | | 4y/5-9=5y/4 | | 4-7u=-24 | | h^2=54 | | 4-7u=24 | | 6-2x=6-10x+8 | | 4x+11=-12910x | | 5(a-7)+3(1-2a)=-(4a-1) | | 3x-7x-12=2x-6 | | 2y-(3y/7)=11 | | y/2-13=2 | | 2x+1/3=5/7 | | y/2-13=25 | | 4g-7=2g+11 | | 6÷(x+1)+7÷(x+5)=11(x+1)(x+5) | | 2x+6÷5=7x-12 | | 7m-7=5m+15 | | x-18=-36.6x2-18.6 | | -8y+16=-32 | | 1/2(28)=2(n) | | 7(x+1)-(5-6x)=0 | | 7x-3×=-28 | | 4(x-5)=2x+11 | | -82/5m=1/2(m-7) | | 3(x+2)-4(x-5)=23 | | 7(x+5)=7 | | (y+5)^2=2y^2+4y+30 | | 7x-3=2-9x |

Equations solver categories